Modelling Solar Thermal Systems

Michaël Kummert
Energy Systems Research Unit

Outline

- Who am I?
 - Solar thermal systems
 - Different tools for different purposes
 - Sensitivity to input data
 - Conclusions
Who am I?

- Mechanical-Electrical engineer
- PhD in environmental sciences
 - Passive/active solar buildings
 - Model-based optimal control
- Consulting engineer
 - Low energy buildings, solar thermal systems
- TRNSYS coordinator
 - Modelling, simulation software development
- Post-doc researcher / lecturer
 - Net-zero energy houses, solar thermal, geothermal
- Lecturer

1. Solar Thermal Systems
Solar Resource

- A (very) little bit of background
 - UK: 900 to 1200 kWh/m²·y (South, ∠ 30°)
 - 90 to 120 litres of oil per m² per year
 - 1 barrel = 159 litres

 ![Solar Resource Map]

- "Typical" UK house
 - ~3 persons
 - 3000 kWh/y DHW
 - 14000 kWh/y SpH

Solar Thermal Systems

- Applications
 - Domestic Hot Water
 - Space heating (Combi-systems)
 - Other applications
 - Swimming pools
 - Process heat
 - Cooling
Solar Domestic Hot Water

- Most frequent application
- Small (housing) applications
 - Standard systems
 - "Design" = choosing a system
 - Retrofit sometimes more challenging
- Larger applications (housing, hotels, hospitals, etc.)
 - "Design" = figure out the DHW load, the roof space and the budget
 - Combination of standard components

SDHW + Space Heating
(Combi-systems)

- Popular in Austria, Germany
 - Some interest in CH, NL, DK, SE, FR, etc.
- The basic problem
 - Demand <> Supply
 - Storage (typically few days)
 - Summer stagnation
- Standard systems
 - Components: advanced storage tanks
 - Design guidelines (IEA Task 26)
 - Integrated in design and optimisation tools
Other applications

- **Swimming pools**
 - Unglazed collectors
 - Combined (glazed)
 - Standard systems
 - Included in design tools

- **Other applications**
 - Solar cooling
 - District heating (with long-term storage)
 - Hybrid geothermal systems
 - Process heat
 - Drying
 - Etc.

Most of the time, no dedicated design tool

2. **Different Simulation Tools**
Different tools for different purposes

- **Pre-feasibility and Feasibility study**
 - *Restscreen, F-chart, web tools*
- **Design of standard systems (DHW, space heating and swimming pools)**
 - *Web tools, T*Sol *express, manufacturer tools*
- **System design and optimisation (various applications)**
 - *T*Sol, *Polysun, TRNSYS*
- **Component design and optimization**
 - *TRNSYS, dedicated (proprietary) tools*
- **Detailed simulation, highly customized systems and applications**
 - *TRNSYS, other component-based tools*

I want to be able to do everything...

What's the cost?

[Diagram showing a 2D scatter plot with axes labeled 'Ease of use' and 'Capabilities / Flexibility'. Points labeled 'TRNSYS', 'Polysun 4', 'T*Sol', 'T*Sol express', 'Retscreen', 'F-chart', 'Web tools'.]
What about "accuracy"?

3. Let's play!
Web-based tools

Examples

- Sponsored by government agencies, utilities, manufacturers, software developers

- Sol-gain (ESE, manufacturer)
 - www.ese-solar.com
 - Many default values
 - Pre-feasibility for general public

- "Online T*Sol" (Valentin software)
 - www.valentin.de
 - Allows combisystems, different types of solar collectors, etc.
 - Some design freedom
 - User level: general public

- Example of missing feature: shading

Pre-feasibility Feasibility

- RETScreen (Natural Resources Canada)
 - "Clean Energy Project Analysis Tool"
 - Free (Excel-based)
 - Solar Hot Water module
 - Monthly weather data
 - Based on the F-chart method
 - Not so many default values
 - Very good manual
 - Output = printed worksheets
 - Cost analysis
 - GHG module
 - Input data!
Basic design (feasibility)

- **T*Sol express** (Valentin EnergieSoftware)
 - Few (5) system designs
 - SDHW, Combsystem
 - Very simple interface
 - Automatic design
 - Storage tank, collector area
 - Simple, "straight-to-the-point" results
 - User level: general public, sales representative

System Design and Optimization

- **T*Sol** (Valentin EnergieSoftware)
 - More than 30 system designs
 - SDHW, Combsystems, Swimming pools
 - Additional modules
 - Catalogue data
 - More detailed load profile
 - "System dialogs"
 - Solar collectors to boiler, pipes and controls
 - Outputs
 - Daily → yearly values
 - Economic analysis
 - Project report
 - User level:
 - sales representative
 - consultant, ...
Component-based programs

- Polysun (SPF, Switzerland)
 - New with version 4
 - Approach similar to T*Sol but ability to modify systems
 - Different levels of users
 - Light
 - Professional
 - Designer
 - Extensive catalogue data
 - Outputs
 - Report generator
 - Economics
 - Etc.
 - Black-box
 - Components
 - System Simulation (e.g. long simulation runtime)

Highly customizable programs

- TRNSYS (Univ. of Wisconsin-Madison, Transsolar, CSTB)
 - Fortran calculation engine ("kernel" and components)
 - Visual interfaces (system, building)
 - Very flexible, steep learning curve
 - Component-based
 - Fortran
 - Other language (drop-in DLL's)
 - Other programs
 - Matlab, Excel, EES, etc.
 - Available components
 - Standard library
 - TESS libraries
 - Other non-standard components
TRNSYS

- Inputs
 - Any weather / load / etc. data file

- Outputs
 - Online plot (debugging, immediate feedback)
 - Text files
 - No post-processing

- Standards
 - TRNSYS is the reference tool for SRCC ratings in the US
 - TRNSYS is mentioned in European standards on solar thermal systems (e.g. ENV-12977-2)
 - Most other tools (e.g. Polysun and T*Sol) present "validation results" against TRNSYS

Why / when to use TRNSYS?

- New components required
- IEA Task 26

#16 Atmospheric Tank with Three Heat Exchangers (Germany)
Why / when to use TRNSYS?

- Flexibility in system designs, combination with other energy systems

Why / when to use TRNSYS?

- Need for other capabilities
 - Detailed building loads
 - Links with other programs
 - Or just read a file...
 - Batch runs
 - Optimisation (GenOpt)
 - Distributable applications
 - Re-use existing component models
Why / when to use TRNSYS?

- Open nature, "reference software"
 - Code is not "free software" but is visible

- Standard performance of systems on the market
 - According to EN 12976
 - Related to subsidies

Input data
Input data

- Load
 - Domestic hot water load
 - Space heating load
 - Yearly average and profile
 - Time of the day
 - Repeatability
 - Holidays

- Weather data
 - Measured solar radiation not always available
 - Shading (when designed, 20 years later)

- System operation
 - Setpoints
 - Bypasses
 - Hot water recirculating loop

- Component data
 - Performance of solar collectors
 - Storage tanks, piping, pumps, etc.

Sensitivity: DHW load

- Base case
 - Solar fraction: 67%
 - Gas saved: 225 m³
 - Net Present Value: -£218

- Load = 100 l/day instead of 150
 - Solar fraction: 75%
 - Gas saved: 190 m³
 - Net Present Value: -£620
Sensitivity:
Load profile

- Some compensating factors
 - If tank warmer, solar collector less efficient

- But
 - Some storage tanks have advanced stratification devices

- Jordan & Vajen, 2000: comparative study
 - Standard draws (prEN12977) at different times
 - Realistic draws
 - Fractional energy savings can go from 0.25 to 0.21 (a 15% difference)
 - Also differences between standard load profiles at different times of the day
 - Best = early afternoon
 - Differences larger when collectors not facing due South

Conclusions
A few links

- General Solar Thermal Information
 - IEA Solar Heating and Cooling Programme: www.iea-shc.org/
 - European Solar Thermal Industry Federation: www.estif.org
 - Solar Trade Association: www.greenenergy.org.uk/sta/
 - The SolarServer: www.solarserver.de/index-e.html

- Software developers
 - RETScreen: www.retscreen.net
 - T*Sol: www.valentin.de
 - Polysun: www.spf.ch
 - TRNSYS: sel.me.wisc.edu/trnsys

A few books

- Solar Engineering of Thermal Processes, 3rd Edition
 John A. Duffie, William A. Beckman

 Felix A. Peuser, Karl-Heinz Remmers, Martin Schnauss

 Werner Weiss, Ed.